

FACULTY OF ENGINEERING

DEGREE COURSE: COMPUTER AND CONTROL ENGINEERING
BS

SUBJECT: ALGORITHMS AND DATA STRUCTURES

LECTURER: LUIGI SARTI

E-mail: luigi.sarti@uniecampus.it

OBJECTIVES
The course is aimed at:

1) improving students’ skills in understanding, evaluating, selecting and developing
algorithms using state-of-the-art programming languages and tools

CONTENTS
Introduction to the course

Computer Science Foundations

Introduction to the analysis of algorithms
Complexity asymptotic analysis
O, Ω, Θ formalisms
Recurrence relation as an analytic method

Algoritmic strategies
Brute force
Greedy techniques
Backtracking
Binary tree representations

Computing algorithms
Simple numeric algorithms
Sequential and binary search
Sorting
Hash tables and collision handling strategies
Binary trees as abstract data
Depth-first and breadth-first visits
Search trees
Stacks and queues
Shortest paths algorithms (Dijkstra, Floyd)
Minimum spanning tree (Prim e Kruskal)
Transitive closures (Floyd)
Coding and decoding algorithms
Data compression algorithms (Ziv-Lempel)

Automata, grammars and languages
Alphabets, strings and languages
Finite state machines and regular expressions

Context independent grammars
Stack-based automata
Context independent grammars
LL(1) grammars and top-down parsing

Programming

Programming paradigms
Functional programming
Object-oriented programming
Encapsulation and information-hiding
Methods to separate interface and implementation
Classes, subclasses and inheritance
High level languages syntax and semantics: variables, types, expressions and
assignment
I/O operations
Selective and iterative control structures
Functional abstraction and parameter passing

Data structures
Built-in types
Arrays
Records
Data representation in memory
Static, automatic and dynamic allocation
Memory management at run-time
Pointers and references
Linked structures
Implementation of stacks, queues, hash tables, graphs, trees
Data persistence: files, streams, file system

Recursion
Mathematical recursive functions

Program translation
Interpreters and compilers
Translation steps (lexical analysis, parsing, code generation, optimization)
Virtual machines
Intermediate languages

Declarations, types, abstraction
Types as sets of values vs. sets of operations
Binding, visibility, accessibility e lifetime of values
Type-checking
Iterators
Parameter types

Object oriented programming
Polymorphism
Class hierarchies
Collections
Design patterns

Event programming
Event handling
Concurrency
Exception handling

Functional programming
Overview of functional languages

Recursion on lists, natural numbers, trees and recursively defined data
Closures
Lazy programming

Overview of emergent programming languages
Scala
Clojure
Erlang

Final exercise

XML documents parsing
Conclusions

LEARNING OUTCOMES
At the end of the course, students will:

• be aware of methodological and operational issues related to the development and
selection of computing algorithms;

• be able to solve problem using state-of-the-art methods, techniques, formalisms,
languages and tools;

• be aware of the potential and the limits of primary programming paradigms and
languages;

• improve their basic cognitive means for lifelong self-training.

ASSESSMENT

Written exam: multiple choice and open questions

RECOMMENDED TEXTBOOKS
Eckel, Bruce (2006). Thinking in Java - 4th ed., Pearson Education, ISBN 0-13-187248-6.
http://www.mindview.net

