FACULTY OF **ENGINEERING**

DEGREE COURSE: CIVIL AND ENVIRONMENTAL ENGINEERING

MASTER DEGREE: CIVIL ENGINEERING

SUBJECT: COMPLEMENTS OF HYDRAULICS

LECTURER: FRANCESCO ARISTODEMO

Email address: francesco.aristodemo@uniecampus.it

OBJECTIVES

- Understanding the main hydraulic processes, their principles and basic mechanics; whole description of mathematical equations under appropriate basic assumptions and boundary conditions;
- Improving the knowledge of hydraulic processes of pressure flows;
- Improving the knowledge of hydraulic processes of free-surface flows;
- Improving the knowledge of hydraulic processes of free-surface flows;
- understanding fundamentals in flow openings;
- understanding fundamentals in seepage flows;
- understanding fundamentals in physical hydraulic models;

CONTENTS

The course (9 CFU) is composed of 72 lessons; it is divided into five modules related to:

1. Pressure flows (4 CFU=32 lessons), focused on uniform flows in laminar and turbulent regime;

2. Free-surface flows (2 CFU=16 lessons), focused on non-uniform and unsteady flows and to solid transport;

3. Physical hydraulic models (1 CFU=8 lessons), focused on dimensional analysis and the theory of models;

- 4. Outflows from orifices (1 CFU=8 lessons), focused on different types of outflows;
- 5. Seepage flows (1 CFU=8 lessons) concerning phreatic and confined aquifers.

For each module the specific topics are illustrated as follows:

MODULE 1 – PRESSURE FLOWS

- 1. Introduction to the course
- 2. Physical properties of fluids
- 3. Navier-Stokes equations
- 4. Equation of global equilibrium
- 5. Uniform flows
- 6. Uniform laminar flows in circular ducts part 1 $\,$
- 7. Uniform laminar flows in circular ducts part 2
- 8. Uniform laminar flows in circular ducts part 3
- 9. Uniform laminar flows in circular ducts part 4.
- 10. Uniform laminar flows between parallel planes part 1
- 11. Uniform laminar flows between parallel planes part 2

- 12. Self-evaluation test on uniform laminar flows
- 13. Turbulent flows part 1
- 14. Turbulent flows part 2
- 15. Turbulent flows part 3
- 16. Turbulent flows part 4
- 17. Turbulent flows part 5
- 18. Turbulent flows part 6
- 19. Turbulent flows part 7
- 20. Turbulent flows part 8
- 21. Turbulent flows part 9.
- 22. Turbulent flows part 10
- 23. Self-evaluation test on mean uniform turbulent flows
- 24. Unsteady flows part 1
- 25. Unsteady flows part 2
- 26. Unsteady flows part 3
- 27. Unsteady flows part 4
- 28. Unsteady flows part 5
- 29. Unsteady flows part 6
- 30. Unsteady flows part 7
- 31. Self-evaluation test on unsteady flows.
- 32. Exercises

MODULE 2 – FREE-SURFACE FLOWS

- 33. Uniform flow in natural rivers part 1
- 34. Uniform flow in natural rivers part 2
- 35. Self-evaluation test on uniform flow in natural rivers
- 36. Non-uniform flow in natural rivers part 1
- 37. Non-uniform in natural rivers part 2
- 38. Non-uniform in natural rivers part 3
- 39. Non-uniform in natural rivers part 4
- 40. Non-uniform in natural rivers part 5
- 41. Non-uniform in natural rivers part 6
- 42. Non-uniform in natural rivers part 7
- 43. Self-evaluation test on non-uniform flows in natural rivers
- 44. Unsteady flow in natural rivers part 1
- 45. Unsteady flow in natural riverbed part 2
- 46. Self-evaluation test on unsteady flows in natural rivers
- 47. Outlines on solid transport
- 48. Self-evaluation test on solid transport

MODULE 3 – PHYSICAL HYDRAULIC MODELS

- 49. Dimensional analysis part 1
- 50. Dimensional analysis part 2
- 51. Dimensional analysis part 3
- 52. Self-evaluation test on dimensional analysis
- 53. Theory of models part 1
- 54. Theory of models part 2
- 55. Theory of models part 3
- 56. Self-evaluation test on theory of models

MODULE 4 – FLOW OPENINGS

- 57. Orifices part 1
- 58. Orifices part 2
- 59. Weirs part 1
- 60. Weirs part 2
- 61. Weirs part 3
- 62. Weirs part 4
- 63. Hydraulic lens
- 64. Self-evaluation test on outflow from orifices

MODULE 5 – SEEPAGE FLOWS

- 65. Underground waters
- 66. Hydrodynamic properties of an aquifer
- 67. Seepage flows
- 68. Tests in equilibrium regime part 1
- 69. Tests in equilibrium regime part 2
- 70. Tests in unsteady regime part 1
- 71. Tests in unsteady regime part 2
- 72. Self-evaluation test on seepage flows

LEARNING OUTCOMES

At the end of the course, the student will be able to explain the main topics of the course and the resolution of application cases through an appropriate technical language.

ASSESSMENT

Written exam: multiple choice and open questions.

RECOMMENDED TEXTBOOKS

- Streeter, V.L., FLUID MECHANICS, McGraw-Hill Book Company, 1-568 pp.
- Massey, B., Ward-Smith, J., MECHANICS OF FLUIDS, Taylor and Francis Group, 1-709 pp.
- Chow, V.T., OPEN-CHANNEL HYDRAULICS, McGraw-Hill Book Company, 1-728 pp.
- Graf, W.H., Altinakar, M.S., FLUVIAL HYDRAULICS: FLOW AND TRANSPORT PROCESSES IN CHANNELS OF SIMPLE GEOMETRY, John Wiley and Sons, 1-682 pp.
- Adami, A., PHYSICAL HYDRAULIC MODELS, Marcianum Press, 1-346 pp.
- <u>Cedergren</u>, H R., SEEPAGE, M DRAINAGE, AND FLOW NETS, John Wiley and Sons, 1-534 pp.